Bacterial Modulation of Plant Ethylene Levels
نویسندگان
چکیده
منابع مشابه
Update on Ethylene Level Modulation Bacterial Modulation of Plant Ethylene Levels
A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially...
متن کاملModulation of ethylene responses affects plant salt-stress responses.
Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTH...
متن کاملMicrobial modulation of plant ethylene signaling: ecological and evolutionary consequences
The plant hormone ethylene is one of the central regulators of plant development and stress resistance. Optimal ethylene signaling is essential for plant fitness and is under strong selection pressure. Plants upregulate ethylene production in response to stress, and this hormone triggers defense mechanisms. Due to the pleiotropic effects of ethylene, adjusting stress responses to maximize resis...
متن کاملPromotion of Plant Growth by Soil Bacteria That Regulate Plant Ethylene Levels
One of the central the mechanisms used by many soil bacteria to directly promote plant growth is the production of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase. This enzyme facilitates plant growth as a consequence of the fact that it sequesters and cleaves plantproduced ACC (the immediate precursor of ethylene in plants), thereby lowering the level of ethylene in the plant. In ...
متن کاملEthylene in plant growth.
Ethylene inhibits cell division, DNA synthesis, and growth in the meristems of roots, shoots, and axillary buds, without influencing RNA synthesis. Apical dominance often is broken when ethylene is removed, apparently because the gas inhibits polar auxin transport irreversibly, thereby reducing the shoot's auxin content just as if the apex had been removed. A similar mechanism may underly ethyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Physiology
سال: 2015
ISSN: 1532-2548
DOI: 10.1104/pp.15.00284